Eric Jedermann, RPTU Kaiserslautern-Landau; Martin Strohmeier and Vincent Lenders, armasuisse; Jens Schmitt, RPTU Kaiserslautern-Landau
Low Earth orbit (LEO) satellite communication has recently experienced a dramatic increase of usage in diverse application sectors. Naturally, the aspect of location privacy is becoming crucial, most notably in security or military applications. In this paper, we present a novel passive attack called RECORD, which is solely based on the reception of messages to LEO satellite users on the ground, threatening their location privacy. In particular, we show that by observing only the downlink of "wandering" communication satellites over wide beams can be exploited at scale from passive attackers situated on Earth to estimate the region in which users are located. We build our own distributed satellite reception platform to implement the RECORD attack. We analyze the accuracy and limiting factors of this new attack using real-world measurements from our own Iridium satellite communication. Our experimental results reveal that by observing only 2.3 hours of traffic, it is possible to narrow down the position of an Iridium user to an area below 11 km of radius (compared to the satellite beam size of 4700 km diameter). We conduct additional extensive simulative evaluations, which suggest that it is feasible to narrow down the unknown location of a user even further, for instance, to below 5 km radius when the observation period is increased to more than 16 hours. We finally discuss the transferability of RECORD to different LEO constellations and highlight possible countermeasures.
Open Access Media
USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.