Pengfei Li, Yu Hua, Pengfei Zuo, Zhangyu Chen, and Jiajie Sheng, Huazhong University of Science and Technology
Awarded Best Paper!Disaggregated memory systems separate monolithic servers into different components, including compute and memory nodes, to enjoy the benefits of high resource utilization, flexible hardware scalability, and efficient data sharing. By exploiting the high-performance RDMA (Remote Direct Memory Access), the compute nodes directly access the remote memory pool without involving remote CPUs. Hence, the ordered key-value (KV) stores (e.g., B-trees and learned indexes) keep all data sorted to provide rang query service via the high-performance network. However, existing ordered KVs fail to work well on the disaggregated memory systems, due to either consuming multiple network roundtrips to search the remote data or heavily relying on the memory nodes equipped with insufficient computing resources to process data modifications. In this paper, we propose a scalable RDMA-oriented KV store with learned indexes, called ROLEX, to coalesce the ordered KV store in the disaggregated systems for efficient data storage and retrieval. ROLEX leverages a retraining-decoupled learned index scheme to dissociate the model retraining from data modification operations via adding a bias and some data-movement constraints to learned models. Based on the operation decoupling, data modifications are directly executed in compute nodes via one-sided RDMA verbs with high scalability. The model retraining is hence removed from the critical path of data modification and asynchronously executed in memory nodes by using dedicated computing resources. Our experimental results on YCSB and real-world workloads demonstrate that ROLEX achieves competitive performance on the static workloads, as well as significantly improving the performance on dynamic workloads by up to 2.2 times than state-of-the-art schemes on the disaggregated memory systems. We have released the open-source codes for public use in GitHub.
FAST '23 Open Access Sponsored by
NetApp
Open Access Media
USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.
This content is available to:
author = {Pengfei Li and Yu Hua and Pengfei Zuo and Zhangyu Chen and Jiajie Sheng},
title = {{ROLEX}: A Scalable {RDMA-oriented} Learned {Key-Value} Store for Disaggregated Memory Systems},
booktitle = {21st USENIX Conference on File and Storage Technologies (FAST 23)},
year = {2023},
isbn = {978-1-939133-32-8},
address = {Santa Clara, CA},
pages = {99--114},
url = {https://www.usenix.org/conference/fast23/presentation/li-pengfei},
publisher = {USENIX Association},
month = feb
}