
Chenxi Wang*, Haoran Ma* (co-first author), Shi Liu, Yifan Qiao,
Jonathan Eyolfson, Christian Navasca, Shan Lu, Guoqing Harry Xu

MemLiner: Lining Up Tracing and Application for a
Far-Memory-Friendly Runtime

2

Memory Capacity Bottleneck in Datacenters

Growing imbalance between processor
computation and memory capacity

Memory underutilization in datacenters

3

Far-Memory System

CPU

Small Local
Memory

Host Server

Network
e.g. RDMA over InfiniBand

~ 10 μs

60 ns

Remote Memory Pool

4

High-level Languages

Applications written in high-
level languages are dominant
in datacenter workloads. OS Kernel

CPU Memory Devices

Runtime

Applications

GC

5

Garbage Collection

Local Mem Ratio 25% 13%

Slowdown 2.6x 3.4x
Live

GC
Root

LiveLive

LiveLive

Live

Dead

Dead

Dead

Tracing is done concurrently
with applications

6

Resource Competition

Local
DRAM

App Threads GC Threads

Process

Swap

Memory Servers

InfiniBand

7

Ineffective Prefetching

Without Concurrent Tracing With Concurrent Tracing

8

Can we disable concurrent tracing?

250
270
290
310
330
350
370
390
410
430
450

Without Concurrent
Tracing

With Concurrent
Tracing

El
ap

se
d

Ti
m

e
(s

)

End-to-end Execution Time

0

20

40

60

80

100

120

140

Without Concurrent
Tracing

With Concurrent
Tracing

El
ap

se
d

Ti
m

e
(s

)

GC Pause Time

9

Are application and garbage collection
completely unrelated?

10

Observations

Application and GC are just temporally unaligned

Changing object access order in GC is possible

1

2

11

Key Design Idea

Aligned
Working Set

App Thread

GC Thread

(b) MemLiner runtime

Line Up

App Thread

GC Thread

(a) Current runtime

GC Working Set

App Working Set

12

Object Classification

1. Local Objects: Currently being accessed by application threads

• GC threads should touch

2. Incoming Objects: In remote memory, will soon be accessed by app threads

• GC threads should touch

3. Distant Objects: In remote memory, will not be accessed by app threads soon

• GC threads should delay the access

13

Challenges in Classifying Objects

How to inform GC threads accessed objects

How to estimate the location of objects

What kind of objects will be accessed by app threads soon

Local

Incoming

Distant

14

Barriers

𝑎 = 𝑏. 𝑓 or 𝑎 = 𝑏[𝑖]

𝑏. 𝑓 = 𝑎 or 𝑏 𝑖 = 𝑎

Read Operation

Write Operation

Pre-read Barrier

Post-read Barrier

Pre-write Barrier

Post-write Barrier

15

Local Objects

𝑎 = 𝒃. 𝑓
𝒃. 𝑓 = 𝑎

Thread 1

Thread 2

Thread 1

Thread 2
Thread 3

Thread 4

Thread 5

Application Threads GC Threads

b

b

b

b

b

Incoming Objects

…

Currently being
accessed by app

In remote memory,
used by app soon

𝑫𝒊𝒇𝒇(,) < δ

17

Distant Objects

Current
Epoch

Unused
(14 bits)

Timestamp
(4 bits)

GC
(4 bits)

Object Address (42 bits,
4TB address space)

Counter maintained by kernel Object reference maintained by runtime

Current
Epoch

Timestamp
(4 bits)

18

Benchmarks

• MemLiner is implemented in two widely-used garbage collectors:
• G1 GC
• Shenandoah GC

• Evaluated MemLiner on 12 workloads using a range of local memory

ratios

• MemLiner is run on two swap systems: Fastswap and Leap

19

Results: Throughput

1.48 1.51

1

1.1

1.2

1.3

1.4

1.5

1.6

25% 13%

Sp
ee

du
p

Local Memory Ratio

G1 GC

2.16

1.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

25% 13%

Sp
ee

du
p

Local Memory Ratio

Shenandoah GC

20

Results: Prefetching Effectiveness

• An average of 1.6x speed up
under 25% local memory on
Leap

• Reduces 58% of on-demand
swap-ins, and 53% of total
swap-ins on average.

25%

44%

60% 62%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Accuracy Coverage

Pe
rc

en
ta

ge

Prefetching Accuracy and Coverage

Unmodified JVM MemLiner

21

Key Takeaways

Thank you! Code at https://github.com/uclasystem/MemLiner.

OS Kernel

CPU Memory

Runtime

Applications

Far Memory

• Runtime should also be taken into
consideration when hardware
changes

• Runtime serves as a semantic bridge
between application and underlying
OS/hardware architecture

https://github.com/uclasystem/MemLiner

Q&A

22

