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Memory Capacity Bottleneck in Datacenters

Growing imbalance between processor 
computation and memory capacity

Memory underutilization in datacenters
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Far-Memory System
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High-level Languages

Applications written in high-
level languages are dominant 
in datacenter workloads. OS Kernel

CPU Memory Devices

Runtime

Applications

GC
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Garbage Collection

Local Mem Ratio 25% 13%
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Tracing is done concurrently
with applications
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Resource Competition
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Ineffective Prefetching

Without Concurrent Tracing With Concurrent Tracing
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Can we disable concurrent tracing?
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Are application and garbage collection 
completely unrelated?
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Observations

Application and GC are just temporally unaligned

Changing object access order in GC is possible

1

2
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Key Design Idea

Aligned 
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App Thread
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(b) MemLiner runtime
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Object Classification

1. Local Objects: Currently being accessed by application threads

• GC threads should touch

2. Incoming Objects: In remote memory, will soon be accessed by app threads

• GC threads should touch

3. Distant Objects: In remote memory, will not be accessed by app threads soon

• GC threads should delay the access
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Challenges in Classifying Objects

How to inform GC threads accessed objects

How to estimate the location of objects

What kind of objects will be accessed by app threads soon

Local

Incoming

Distant
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Barriers

𝑎 = 𝑏. 𝑓 or 𝑎 = 𝑏[𝑖]

𝑏. 𝑓 = 𝑎 or  𝑏 𝑖 = 𝑎

Read Operation

Write Operation

Pre-read Barrier

Post-read Barrier

Pre-write Barrier

Post-write Barrier
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Local Objects

𝑎 = 𝒃. 𝑓
𝒃. 𝑓 = 𝑎

Thread 1
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Thread 1
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Thread 5
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Incoming Objects

…

Currently being 
accessed by app

In remote memory, 
used by app soon
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Distant Objects

Current 
Epoch

Unused
(14 bits)

Timestamp
(4 bits)

GC
(4 bits)

Object Address (42 bits, 
4TB address space)

Counter maintained by kernel Object reference maintained by runtime

Current 
Epoch

Timestamp
(4 bits)
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Benchmarks

• MemLiner is implemented in two widely-used garbage collectors:
• G1 GC
• Shenandoah GC

• Evaluated MemLiner on 12 workloads using a range of local memory

ratios

• MemLiner is run on two swap systems: Fastswap and Leap 
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Results: Throughput
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Results: Prefetching Effectiveness

• An average of 1.6x speed up 
under 25% local memory on 
Leap

• Reduces 58% of on-demand 
swap-ins, and 53% of total 
swap-ins on average.

25%

44%

60% 62%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Accuracy Coverage

Pe
rc

en
ta

ge

Prefetching Accuracy and Coverage

Unmodified JVM MemLiner



21

Key Takeaways

Thank you! Code at https://github.com/uclasystem/MemLiner.

OS Kernel

CPU Memory

Runtime

Applications

Far Memory

• Runtime should also be taken into 
consideration when hardware 
changes

• Runtime serves as a semantic bridge
between application and underlying 
OS/hardware architecture 

https://github.com/uclasystem/MemLiner


Q&A
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