
XRP: In-Kernel Storage 
Functions with eBPF

Yuhong Zhong1, Haoyu Li1, Yu Jian Wu1, Ioannis Zarkadas1,
Jeffrey Tao1, Evan Mesterhazy1, Michael Makris1, Junfeng Yang1

Amy Tai2, Ryan Stutsman3, and Asaf Cidon1

1

1 2 3



Kernel Software is Becoming the Bottleneck for Storage

2

NAND
SSD

Optane SSD
(Gen 1)

Average Read Latency Breakdown
100%

75%

50%

25%

0%

Hardware

Kernel
Software~50%

Kernel software overhead accounts for ~50% of read latency on Optane SSD Gen 2

Optane SSD
(Gen 2)

Workload: Random 512B Read



Where Does the Latency Come From?

3

Syscall Layer

User Space

File System and Block Layer

NVMe Driver

Storage Device

Application
Read Request

Read Request

Read Request

Read Request

Read Response

Kernel
Boundary 0.4 μs (5.6%)

0.2 μs (3.2%)

2.4 μs (38.0%)

0.1 μs (1.8%)

3.2 μs (51.4%)

Workload: Random 512B Read, Disk: Optane SSD P5800X

Hardware

Kernel
Software
(48.6%)



Bypass Kernel to Eliminate Overhead

4

Syscall Layer

User Space

File System and Block Layer

NVMe Driver

Storage Device

Application

K
ernelB

ypass

(Managed by User Space, Interrupt Disabled)

Reduce
read
latency
by 49%

Academic Work
Demikernel (SOSP ’21),
Shenango (NSDI ’19),
Snap (SOSP ’19),
IX (SOSP ’17),
Arrakis (OSDI ’14),
mTCP (NSDI ’14),
...

In industry, the
most common
library is SPDK

Kernel
Boundary 0.4 μs (5.6%)

0.2 μs (3.2%)

2.4 μs (38.0%)

0.1 μs (1.8%)

3.2 μs (51.4%)



Kernel Bypass is Not a Panacea

5

Syscall Layer

User Space

File System and Block Layer

NVMe Driver

Storage Device

Application

K
ernelB

ypass

Does not incur the overhead of the
kernel storage stack

No fine-grained access control

Requires busy polling for completion

✅

❌

❌

(Managed by User Space, Interrupt Disabled)

Processes cannot yield CPU
when waiting for I/O❌

❌
CPU cycles are wasted when I/O
utilization is low

❌
CPU cannot be shared efficiently
among multiple processes

Kernel
Boundary



Move Application Logic Into the Kernel

6

Syscall Layer

User Space

File System and Block Layer

NVMe Driver

Storage Device

Application

Potentially
reduce read
latency by
up to 47%

Custom Function

Read Request

Read Response

Submit read requests
Process read responses

Kernel
Boundary 0.4 μs (5.6%)

0.2 μs (3.2%)

2.4 μs (38.0%)

0.1 μs (1.8%)

3.2 μs (51.4%)

Kernel
Software
(48.6%)



B+ Tree Index Lookup from User Space

Syscall Layer

User Space

File System and Block Layer

NVMe Driver

Storage Device

7

Kernel Boundary (5.6%)

3.2%

38.0%

1.8%

51.4%

Fetch
Root Node

Fetch

Next Node

Fetch

Next Node

Parse
Node

Parse
Node

Parse
Node

Traverse the full
kernel software
stack multiple
times

Node parsing and I/O
request submission
are performed in
user space



B+ Tree Index Lookup With an In-Kernel Function

Syscall Layer

User Space

File System and Block Layer

NVMe Driver

Storage Device

8

Kernel Boundary (5.6%)

3.2%

38.0%

1.8%

51.4%

Custom Function

Fetch

Root Node Re
tu
rn

Le
af
No
de

Parse Node

Only traverse
the full kernel
software stack
once

Reduce the latency of the
intermediate I/O by up to 47%

A Chain of Dependent
Read Requests:



Chains of Dependent Read Requests are Very Common

9

Goal: Build a framework for storage engines to accelerate
dependent read requests using in-kernel functions

Issue dependent read requests to perform lookups

LSM TreeB-Tree



Syscall Layer

User Space

File System and Block Layer

NVMe Driver

Storage Device

10

Kernel Boundary (5.6%)

3.2%

38.0%

1.8%

51.4%

XRP: A Framework for In-Kernel Storage Functions

Custom Function f

Load a custom
function into

the kernel

Initiate a
chain of read

requests

f() f() f()

Req 1

Re
tu

rn
fin

al
re

su
lt

to
us

er
sp

ac
e

Req 2 Req 3

XRP can accelerate many types of
operations such as index lookups, range
queries, and aggregations



Syscall Layer

User Space

File System and Block Layer

NVMe Driver

Storage Device

11

Kernel Boundary (5.6%)

3.2%

38.0%

1.8%

51.4%

Using BPF to Offload Custom Functions Safely

Custom Function f

Load a custom
function into

the kernel

f() f() f()

lets application offload simple
functions to the Linux kernel safelyInitiate a

chain of read
requests

May be buggy 
or malicious

How to ensure that user-defined
functions cannot compromise the kernel?

BPF programs are statically checked 
before being loaded into the kernel

(BPF)



BPF is Widely Used in Networking

12

Packet Filtering

Packet Forwarding

Network Scheduling

Packet Tracing

A BPF program can
operate on each
packet independently

However, a storage BPF program needs to traverse a
large on-disk data structure in a stateful way



Adopting BPF in Storage is Challenging

13

Key research challenges:
• Translating file offsets in the NVMe driver
• Augmenting the BPF verifier to support storage use cases
• Resubmitting NVMe requests
• Interaction with application-level caches

XRP is the first system that adopts BPF to reduce the kernel 
software overhead for storage



BPF Can Traverse Different Types of Data Structures

14

u32 btree_lookup(struct bpf_xrp *context) {
struct node *n = (struct node *) context->data;

if (node->type == LEAF) {

}
int i;

u64 search_key = *(u64 *) context->scratch;

for (i = 1; i < MIN(n->fanout, MAX_FANOUT); ++i) {

context->done = true;
return 0;

if (search_key < n->key[i]) break;
}
context->done = false;
context->next_addr[0] = n->addr[i - 1];
return 0;

}

Data Buffer Scratch Buffer

fanout
type

key[0]
key[1]
...

key[n]
addr[0]
...

addr[n]

search_key

(unused)

MAX_FANOUT ensures for loop is
bounded

(Data fetched from disk) (Private scratch space)



15

XRP: In-Kernel Storage Functions with eBPF

XRP

BPF-KV

Integrate

A simple B+ tree key-value store

A popular production key-value store

(LSM Tree)



Evaluation

• What is the performance benefit of XRP?

16

• How does XRP compare to kernel bypass?

• What types of operations can XRP support?

• Can XRP accelerate a production key-value store?
See the 
paper



17

Multi-threaded throughput in BPF-KV with uniform random 512B read:
Throughput

Increase by up to 120%

XRP can scale well even if the
number of threads exceeds the
number of cores

XRP Nearly Eliminates the Kernel Software Overhead

This is because XRP alleviates the
CPU contention by reducing the CPU
overhead per IO request



XRP Handles CPU Contention, SPDK Not So Much

18

SPDK fails to scale beyond 6
threads because SPDK threads
cannot yield CPU when waiting for
I/O to complete

Multi-threaded throughput in BPF-KV with uniform random 512B read:

XRP provides performance that
is close to/better than SPDK
without sacrificing isolation
and CPU efficiency

Each thread represents a different storage application on the same machine

Throughput



19

Multi-threaded tail latency in BPF-KV with uniform random 512B read:
Tail Latency

Compared to read, XRP improves
tail latency by up to 45%

XRP Handles CPU Contention, SPDK Not So Much

Tail latency of SPDK spikes to ~10
ms when the number of threads is
greater than the number of cores
by more than 50%



Conclusions

• XRP is the first system to use BPF to accelerate common 
storage functions

• XRP captures most of the performance benefit of kernel 
bypass, without sacrificing CPU utilization and access control

We are actively integrating XRP with other popular key-value
stores including RocksDB

Try it out: http://xrp-project.com/
yuhong.zhong@columbia.edu

20

http://xrp-project.com/

