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Abstract
People proposed to use virtualization techniques to reinforce
the isolation between containers. In the design, each container
runs inside a lightweight virtual machine (called microVM).
MicroVM-based containers benefit from both the security of
microVM and the high efficiency of the container, and thus
are widely used on the public cloud.

However, in this paper, we demonstrate a new attack
surface that can be exploited to break the isolation of the
microVM-based container, called operation forwarding at-
tacks. Our key observation is that certain operations of the
microVM-based container are forwarded to host system calls
and host kernel functions. The attacker can leverage the opera-
tion forwarding to exploit the host kernel’s vulnerabilities and
exhaust host resources. To fully understand the security risk
of operation forwarding attacks, we divide the components
of the microVM-based container into three layers according
to their functionalities and present corresponding attacking
strategies to exploit the operation forwarding of each layer.
Moreover, we design eight attacks against Kata Containers
and Firecracker-based containers and conduct experiments
on the local environment, AWS, and Alibaba Cloud. Our
results show that the attacker can trigger potential privilege
escalation, downgrade 93.4% IO performance and 75.0%
CPU performance of the victim container, and even crash the
host. We further give security suggestions for mitigating these
attacks.

1 Introduction

Containers have been widely adopted in cloud computing
due to their high resource utilization efficiency. According
to Cloud Native Survey 2021 from the Cloud Native Com-
puting Foundation, 93% of respondents are currently using
or planning to use containers in their productions, which has

* Co-first authors.
+ Co-corresponding authors.

increased by 300% since 2016 [1]. Nowadays, container tech-
niques have become the foundation of cloud computing. All
leading cloud computing vendors provide container-based
cloud computing services, such as Azure Container Instances
and AWS Elastic Container Service.

Unfortunately, the high efficiency of containers also comes
with a price. The shared kernel design cannot provide strong
isolation between containers, leading to information leaks [2],
out-of-band workloads breaking control groups [3], and ab-
stract resource attacks [4]. Even worse, the attacker can ex-
ploit kernel bugs to compromise the shared kernel to attack all
containers on the same kernel [5]. To mitigate security risks
introduced by the shared kernel, prior works have proposed
microVM-based containers, which run each container inside
a lightweight virtual machine (called microVM).

The microVM-based container provides a dedicated guest
kernel for the container and uses hardware virtualization to
enforce strong isolation between containers. Therefore, it
benefits from both the security of microVM and the high
efficiency of the container, and thus it is regarded as a secure
alternative to the original shared-kernel container. Therefore,
leading cloud computing vendors have developed multiple
microVM-based container techniques, such as Firecracker-
based containers from Amazon AWS [6] and Kata Containers
from Alibaba Cloud [7]. Both of them have been used heavily
on the public cloud. For example, the Firecracker-based
container is the runtime for AWS serverless service, including
AWS Fargate [8] and Lambda [9].

Similar to traditional VMs, the microVM-based container
uses a hypervisor to create and manage a microVM. On top
of the VM, it adds container runtime components to create
containers inside the microVM. Most system call needs of
the container are served by the guest kernel of the microVM.
The microVM-based container and the host machine envi-
ronment can be regarded as two isolated worlds. However,
we observe that certain operations of the microVM-based
container are forwarded to the host kernel (termed operation
forwarding) due to performance and functionality require-
ments. Unfortunately, existing research works [10–15] on the



security of VMs focus on vulnerabilities, side-channels, and
covert-channels, ignoring the operation forwarding.

However, in this paper, we demonstrate that the opera-
tion forwarding can be exploited to break the isolation of
microVM-based containers. We find that an attacker can
leverage the operation forwarding of the microVM-based
container to trigger specific host system calls and kernel func-
tions. Next, the attacker uses these system calls and kernel
functions as entries to exploit the host kernel’s vulnerabilities
and exhaust host resources. We term these attacks operation
forwarding attacks.

To systematically explore the attack surface, we divide the
components of the microVM-based container into three layers
based on their functionalities: container runtime components,
the device emulator, and host kernel components. We design
three attacking strategies targeting all these three layers. To
demonstrate the feasibility and practicality of these attacking
strategies, we leverage a semi-automatic approach to identify
attack vectors following the strategies. We further design
eight attacks targeting the Firecracker-based container and
Kata Containers to evaluate the impact and demonstrate the
security risks of these attacks. Contributions of this work are
summarized as follows.
New attack surface. We demonstrate a new attack surface
of the microVM-based container called operation forwarding
attack. Attackers can exploit the operation forwarding of
microVM-based container components to trigger the host
kernel’s vulnerabilities and exhaust host resources, causing
potential privilege escalation and DoS attacks.
Attacking strategies. We propose attacking strategies target-
ing all three layers of microVM-based containers, including
container runtime components, the device emulator, and host
kernel components. We demonstrate that the attacker can
launch operation forwarding attacks through all three layers
to break the isolation of the microVM-based container.
Practical attacks. We design eight attacks against Kata Con-
tainers and Firecracker-based containers and conduct exper-
iments on the local testbed, Alibaba Cloud, and AWS. All
these environments are vulnerable to our attacks. More specif-
ically, these attacks lead to privilege escalation and cause
93.4% IO and 75.0% CPU downgrades, and 60.0% packet
loss. We have reported all issues to the related security teams.
They have confirmed these issues and assigned a new CVE
(CVE-2022-0358) [16] to us.

2 Background

In this section, we describe the necessary background knowl-
edge of our work, including the microVM-based container
architecture and its application scenarios.
MicroVM-based container architecture. A microVM-
based container runs a native container instance inside a dedi-
cated lightweight virtual machine, which excludes unneces-
sary devices and guest-facing functionalities of the virtual
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Figure 1: MicroVM-based container architecture.

machine to reduce the performance overhead and attack sur-
face. As shown in Figure 1, based on the functionalities, the
architecture of a microVM-based container can be divided
into three layers: (1) container runtime components, (2) de-
vice emulator, and (3) host kernel components. Specifically,
the container runtime components are introduced to launch
and manage the microVMs and the native containers running
inside the microVMs. The device emulator is a user-space
program on the host that simulates various hardware devices.
The host kernel components are loadable kernel modules in
the host to provide virtualization functionality support. For
example, Kernel-based Virtual Machine (KVM) [17] allows
the host kernel to function as a hypervisor, and the vhost-
net [18] module offloads the network device from the device
emulator to a kernel module. Note that the microVM of a
microVM-based container mainly leverages virtio [19] frame-
work for IO virtualization, which adopts a front-end driver
in the guest kernel. The front-end driver transports the IO
requests from the containers to the back-end in the container
runtime components and device emulator layer via virtqueues.

Accordingly, there are two popular microVM-based con-
tainers, i.e., Kata Containers [7] and Firecracker-based con-
tainer [20]. In the container runtime components layer, Kata
runtime creates and manages the microVMs and isolated con-
tainers for Kata Containers, and firecracker-containerd [21]
plays the same role in the Firecracker-based container. Be-
sides, virtiofs daemon is a unique container runtime compo-
nent of Kata Containers to support virtiofs in order to share
containers’ rootfs and volumes between the host and guest
systems. As for the device emulator layer, QEMU is the de-
fault device emulator of Kata Containers, and Firecracker is
naturally the device emulator of Firecracker-based container.
And both Kata Containers and Firecacker-based container
use KVM as the hypervisor, while only Kata Containers in-
troduces vhost-net module for networking in the host kernel
components layer.
Application scenarios. To enforce isolation and security,
cloud vendors use different microVM-based containers to
contain each tenant’s workload. For instance, AWS (Ama-
zon Web Services) uses the Firecracker microVM to isolate
workloads in multi-tenant environments [22]. Specifically,
in the AWS serverless environment, such as Lambda [9] and
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Figure 2: A real attack example in Kata Containers. Kata Container
forwards the guest open() system call to the virtiofs daemon, which
triggers host open() system call.

Fargate [8], all the native containers of one tenant are run-
ning in a dedicated Firecracker microVM and managed by
firecracker-containerd [23]. In contrast, Alibaba cloud uses
Kata Containers to provide a multi-tenant serverless environ-
ment called ECI (Elastic Container Instance) [24]. In ECI,
one tenant’s workloads are confined in a separate Kata con-
tainer instance, which uses QEMU as the device emulator by
default. Namely, cloud vendors leverage microVM-based con-
tainers to secure different tenants’ workloads in a multi-tenant
environment.

Ideally, as each microVM-based container is isolated in a
single virtual machine, an attack via such a container is un-
likely, if not impossible, to have a security impact on the host
or other containers. However, in this paper, we demonstrate
that the isolation of microVM-based containers has security
risks in all of its three layers, i.e., the container runtime com-
ponents, the device emulator, and the host kernel components.
A malicious cloud user can break the isolation of microVM-
based containers, which leads to potential privilege escalation,
DoS attacks, and even host crashes.

3 Motivation and Attacking Strategies

In this section, we first present the threat model and assump-
tions of our work, then we describe the motivation of this
paper and use a real example to illustrate the details. Af-
ter that, we introduce three strategies to systematically ex-
plore the attacks in each layer according to the architecture
of microVM-based container (as shown in Figure 1).

3.1 Threat Model and Assumptions
The attacker aims to break the isolation of the microVM-based
containers and disrupt other containers running on the same
host, as the microVM-based containers are widely used by

1 void inode_init_owner(...)
2 {
3 ...
4 if (dir && dir->i_mode & S_ISGID) {
5 ...
6 if (S_ISDIR(mode))
7 ...
8 else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID |

S_IXGRP) &&↪→
9 !in_group_p(i_gid_into_mnt(mnt_userns, dir)) &&

10 !capable_wrt_inode_uidgid(mnt_userns, dir,
CAP_FSETID))↪→

11 mode &= ~S_ISGID;
12 } else
13 ...
14 ...
15 }

Figure 3: Linux kernel source of inode_init_owner(). It checks
(line 9) and cleans the file’s SGID (line 11) if the creation process
does not have the same supplemental group as the directory owner.

cloud vendors to provide multi-tenant container services [8,
24]. We assume that the attacker is able to create one or more
microVM-based containers through a web or command-line
console. The attacker can also interact with the container
runtime through the console. Moreover, the attacker can run
any programs within the created microVM-based containers.
This assumption is reasonable as all popular cloud vendors
provide cloud users with the console to allow them to control
the life-cycle of containers. In addition, cloud vendors allow
users to upload and execute their own programs within their
containers.

On the restriction side, the attacker’s microVM-based con-
tainers are limited by the most restricted security practices.
There are two layers of enforcement to restrict the microVM-
based container. The first layer is that the host kernel uses all
popular features to isolate these microVMs. More specifically,
the host kernel leverages state-of-the-art hardware virtualiza-
tion (e.g., KVM with the support of Intel CPU VT-x [25]) to
isolate the microVMs. At the same time, the host kernel uses
seccomp [26] to block the sensitive host system calls raised by
the microVMs, and it leverages control groups (cgroups) [27]
to limit the microVM’s resource utilization. The second layer
is that the guest kernel enforces as many namespaces [28]
and control groups as possible to restrict the container inside
the microVM. We further assume that the host and guest
kernels have no known vulnerabilities and that all security
mechanisms work properly.

In this paper, we show that even with all the mentioned
isolation and protection enforced, a malicious user can still
attack the host or other victim containers.

3.2 Motivating Example

The microVM-based container forwards operations to the
host kernel and uses the host kernel functionalities to serve
its requirements. However, the operation forwarding intro-
duces new attack surfaces that allow the attacker to break
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Figure 4: The overview of attacking strategies to break the isolation of microVM-based containers.

the microVM isolation. In the following, we use a real at-
tack, which is discovered by us and confirmed by the Kata
developers (with a new CVE assigned), to illustrate the attack
surface.

Kata Containers leverages virtiofs to share directories and
files (i.e., container rootfs image, container volume) between
the host system and the container. The pass-through design
of virtiofs daemon leads to an attack. To share directories be-
tween microVMs and host, virtiofs forwards the guest system
calls to a host user space program (i.e., virtiofs daemon), and
leverages it to perform the actual operations on the shared
directories. In this example, we notice that the virtiofs for-
wards guest open() to the virtiofs daemon’s open() while the
virtiofs daemon itself has improper permission. Thus, the
malicious container can leverage the virtiofs daemon’s per-
mission to bypass the check of the host kernel and create a
file with host root SGID, allowing privilege escalation on the
host machine.

Specifically, if a shared directory belongs to a regular user
and host root group, and the SGID (Set Group ID) permis-
sion [29] bit is set for it, a malicious container can create an
executable file with an unintended host SGID permission bit
in the directory. Note that if the SGID permission bit is set
for a directory, any files created inside the directory will get
the same group ownership as the directory. As the file’s SGID
permission allows the file to be executed as the group that
owns the file, thus a regular user can get the host root group
privileges when executing the file created by the malicious
container.

To launch an attack, a malicious container requests to cre-
ate a new file with SGID permission bit in the shared di-
rectory, which is achieved by making an open() system call
with S_ISGID [30] flag. The virtiofs driver in the guest ker-

nel intercepts the open() system call and forwards it to the
virtiofs daemon, which requests the host open() system call
to serve its functionalities (❶ in Figure 2). After that, the
file creation request enters the host kernel and invokes the
inode_init_owner() function to initialize the inode of the
creating file. As shown in Figure 3, the inode_init_owner()

function determines if the SGID permission bit of the cre-
ating file needs to be cleared. To do that, it first checks if
the directory has the SGID permission bit (line 4), which
will be naturally passed in this case. Then it checks if the
creation process has the same supplemental group as the di-
rectory owner. However, according to the virtiofs daemon’s
document [31], virtiofs daemon must run as the root user and
has the root group in its supplemental group. As a result,
the check is passed, and the file successfully keeps the SGID
permission which should have been cleared.

Note that in the above process, an operation forwarding of
a system call from guest open() to host open() happened to
accomplish the task of file creation. Our key observation in
this paper is that operation forwarding is possible to introduce
(or forward) attacks if it is not properly used, just as shown in
the real example of Figure 2.

We reported this bug to the virtiofs developer group. They
confirmed the issue and fixed it by dropping the root group
from the virtiofs daemons’s groups list. After further evalua-
tion by the Red Hat product team, a new CVE-2022-0358 [16]
has been assigned to us.

3.3 Attacking Strategy Overview
We design three attacking strategies targeting container run-
time components, device emulator, and host kernel compo-
nents to launch operation forwarding attacks respectively, as



shown in Figure 4. The key idea of these strategies is leverag-
ing the operation forwarding to make each layer’s components
improperly call host system calls and kernel functions. First,
we show that an attacker or an attacker-controlled container
can trigger the container runtime components to make host
system calls to exploit host kernel’s vulnerabilities and ex-
haust host resources (❶ in Figure 4) in §3.4. Second, we
show that the malicious container can force the device emula-
tor to invoke host system calls to exhaust host resources (❷
in Figure 4) in §3.5. Third, we demonstrate that the malicious
container can forward its operations to host kernel functions
running by kernel threads through host kernel components,
which consumes extra CPU resources (❸ in Figure 4) in §3.6.

3.4 Attacking Container Runtime Compo-
nents

The first strategy is to exploit the container runtime compo-
nents to break the isolation of the microVM-based container
(❶ in Figure 4). Note that the container runtime components
forward guest system calls or container management requests
to host system calls without rate limitations and additional
security checks. A malicious container can exploit this op-
eration forwarding at a high rate to exhaust host resources.
Besides, an attacker can leverage the operation forwarding
to exploit the host kernel’s vulnerabilities and escalate privi-
leges.

There are two paths that can be exploited by the attackers
to launch operation forwarding attack (❶ in Figure 4). First,
the attacker-controlled malicious container can make guest
system calls. Then the system call requests are forwarded to
the container runtime components’ host system calls by the
front-end driver in the guest kernel. Second, the attacker can
send container management requests to the container runtime
components directly via the manage console, to achieve the
same goal.

By exploiting the above operation forwarding, the attackers
can launch attacks to exhaust host resources. For example, the
container’s write() is forwarded to the host write(), which
can exhaust the host dirty memory. We present more details in
§4.3.1. Even worse, these components need host privileges to
perform operations, and thus both of them run as the root user.
As a result, the attacker can trigger host system calls with the
root permission to escape the microVM-based container, as
we will demonstrate in the firecracker-containerd escalation
in §4.4.1.

3.5 Attacking Device Emulator
The second strategy is to exploit the device emulator (❷ in Fig-
ure 4). A malicious container can leverage operation forward-
ing to trigger specific guest system calls repeatedly, which
consumes massive host kernel resources and causes DoS at-
tacks.

The device emulator is a user-space program that emulates
device behaviors for the microVM. To emulate the devices,
it makes host system calls and leverages the host kernel to
access the actual physical device. As shown in Figure 4, when
the container makes system calls in the guest kernel, the guest
kernel’s front-end driver sends the request to the back-end
device in the device emulator. After that, the device emulator
invokes host system calls to serve its functionalities.

As a result, a malicious container can exhaust the host
resources by repeatedly triggering the operation forwarding
of device emulators. For example, the virtio block (a.k.a
virtio-blk) presents a virtual hard disk for the Firecracker
microVMs. Writing a large file directly to the guest’s disk
triggers the virtio-blk device to write the disk image file on
the host, which occupies the host’s dirty memory. Similarly,
the virtio-net device utilizes the host kernel network stack to
forward the container packets to the destinations, which can
fill up the host connection tracking table. We present more
details in §4.4.2 and §4.4.3.

3.6 Attacking Host Kernel Components
The third strategy is to exploit the host kernel components
(❸ in Figure 4). A malicious container can use the operation
forwarding to generate out-of-band workloads on the host
kernel services, which consume extra host resources and cause
DoS attacks.

Unlike the previous two layers, the host kernel components
are kernel modules in the host kernel space, they forward
the container’s operations to host kernel functions. Some of
these kernel functions run in the context of the kernel threads,
which are scheduled to physical CPUs and consume the CPU
resources. However, these kernel threads are attached to the
host root cgroups. As a result, the resources consumed by
these kernel threads cannot be limited by the microVM-based
containers.

Specifically, KVM and vhost-net kernel modules create
several kernel threads to emulate hardware devices asyn-
chronously. For example, KVM creates kvm-pit kernel thread
to inject the Programmable Interval Timer (PIT) [32] in-
terrupts to the guest system. The vhost-net kernel module
creates a vhost kernel thread to perform the network device
emulation. These kernel threads will wake up to run ker-
nel functions and consume considerable CPU resources. In
the meantime, both of them are attached to the root cgroups.
Thus, a microVM-based container can delegate workload on
host kernel threads, consume extra host resources and break
the isolation of microVM-based container.

4 Operation Forwarding Attack: Practical
Case Studies

In this section, we first present our approach of identifying
attack vectors. Then we use real cases to validate the identi-



Table 1: Summary of all the attacks. “K” denotes the Kata Containers environment, “F” denotes the Firecracker-based container environment,
and “Container#” denotes the number of malicious containers required to achieve the effect of the attacks described in “Impact”.

Case Strategy Trigger Func Host Func Container# Impact
Virtiofs daemon escalation ❶ open() open() 1 Create executable file with unintended SGID bit
Firecracker-containerd escalation ❶ CreateVM() chown() & creat() 1 Change host directory’s owner; empty host files; host crash
Dirty memory attack (K) ❶ write() write() 1-2 Downgrade victim 93.4% IO performance;
Dirty memory attack (F) ❷ write() write() 1-2 Downgrade victim 86.7% IO performance
Nf_conntrack table attack (K) ❸ connect() tap_sendmsg() 10 55.0% of victim’s network packets lost;Nginx connection timeout
Nf_conntrack table attack (F) ❷ connect() sendmsg() 10 60.0% of victim’s network packets lost;Nginx connection timeout
Vhost-net attack ❸ sendmsg()/recvmsg() handle_tx()/handl_rx() 2 Consume 1x more resources
KVM PIT timer attack ❸ outb() pit_do_work() 10 Downgrade victim 75.0% CPU performance

fied attack vectors and give out detailed steps for attacking
microVM-based containers. The results show that our attack-
ing strategies are practical and have severe consequences.

4.1 Identifying Attack Vectors
Our approach. We design a semi-automatic approach to iden-
tify attack vectors following strategies in §3. Our approach
consists of two steps. First, we combine both dynamic and
static analysis to identify operation forwarding paths from the
container to the host machine. For the dynamic analysis, we
run Linux Test Project (LTP) [33] test cases in the container
to trigger guest system calls. In the meantime, we use strace

command to trace container runtime components (e.g., vir-
tiofs daemon) and device emulator processes. These traces
allow us to establish the forwarding mappings between guest
system calls and host system calls originating from device em-
ulator or container runtime components processes. Moreover,
the attacker may send container management requests to the
container runtime components directly via gRPC. Therefore,
we develop a scripting tool to statically analyze the source
code of container components to identify host system calls in
the gRPC implementation and build the operation forwarding
paths from container management requests to host system
calls. Second, we manually go through all operation forward-
ing paths to identify ones that miss permission checks or rate
limitations. We term these forwarding paths as sensitive paths.
To validate the practicality of exploiting sensitive paths, we
then manually design attacks to trigger host vulnerabilities or
exhaust host resources via these paths.

Let’s use the virtiofs example in §3.2 to illustrate the above
steps. We first run LTP test cases to trigger guest system
calls and use strace for tracing the paths. As a result, we
identify 25 operation forwarding paths starting from virtiofs.
Second, we go through these forwarding paths and identify a
sensitive path that the virtiofs daemon triggers the host system
call open() without dropping the host root group from its
supplemental group. Therefore, we follow this sensitive path
and bypass the check of the host kernel to create a file with
host root SGID via virtiofs daemon, which leads to privilege
escalation on the host machine. Using the same methodology,
we further identify seven other attacks in all three layers of
the microVM-based containers, as discussed in §4.3 and §4.4.
Related techniques. Researchers have proposed multiple

hypervisor fuzzing techniques to automatically uncover
virtualization-related bugs [34–36]. Techniques in those
works can be used to trigger paths from the container to the
host machine. However, these fuzzers focus more on memory
vulnerabilities such as use-after-free, stack (or heap) overflow,
and segment faults, rather than operation forwarding paths
between the VM and the host machine. Moreover, to identify
meaningful forwarding paths, the fuzzer needs extra feedback
like resource utilization and permission changes besides the
code coverage to motivate program mutations, which is hard
to implement.

The microVM-based container and the host machine envi-
ronment can also be regarded as two isolated worlds. There-
fore, sanitization vulnerabilities between SGX enclaves and
the host machine [37] may also exist in the microVM-based
container scenario. However, our paper focuses on a special
problem that is caused by the operation forwarding, rather
than the general security issues due to missing sanitization.

4.2 Experiment Setup and Result Summary
Ethical considerations. We conduct the experiments on both
the local testbed and the cloud-vendor platforms. For the
cloud-vendor platforms, note that our attacks may potentially
affect other tenants on the same host. Therefore, we choose
to use dedicated bare-metal servers of the AWS and Alibaba
Cloud for experiments, which are only used by us and not
shared with other tenants.
Environment setup. We set up microVM-based container
environments on both the local and the cloud-vendor plat-
forms. On the local environment, the test machine has the
Intel Core i5 CPU, with 8 GB memory and 256GB SSD, and
it runs deepin 20.2.2 Desktop with Linux Kernel v5.17.0. We
deploy both Firecracker-based containers and Kata Contain-
ers on the local testbed. For the cloud-vendor platforms, we
deploy a Firecracker-based container on an AWS m5zn.metal
bare metal server with 48vCPU and 192GB memory, and it
uses Amazon Linux 2 with Linux Kernel v5.10 to emulate
the AWS multi-tenant environment. To represent the Alibaba
Cloud multi-tenant environment, we deploy Kata Containers
on an Alibaba Cloud ecs.ebmc6me.16xlarge bare metal server
with 60vCPU and 192GB memory, which uses Ubuntu 20.04
LTS with Linux Kernel v5.11.

Furthermore, we follow the firecracker-containerd’s doc-



umentation1 to deploy Firecracker-based container with
firecracker-containerd v1.6.3 and Firecracker v1.1.0 on both
the local and the AWS bare-metal server. Note that firecracker-
containerd is an incomplete open-source project which lacks
necessary how-to documents. We modify its source code
to activate some of its features. For example, we follow
the volume test [38] to enable the container volume. As for
Kata Containers, we deploy v2.4.0-alpha0 with QEMU v6.1.0
based on the guidance [39] on both the local and the Alibaba
Cloud bare-metal server.
Result summary. We launch attacks and conduct case studies
to validate the identified attack vectors. The overall summary
of all case studies is shown in Table 1, which includes the
case name (Case), the corresponding attacking strategy (Strat-
egy), the trigger function of the operation forwarding (Trigger
Func), the host function of the operation forwarding (Host
Func), the number of malicious containers to launch attacks
(Container#), and the corresponding impact of the attack case
(Impact).

For the Kata Containers environment, besides the virtiofs
daemon escalation attack in §3.2, we design three more at-
tacks. 1) dirty memory attack. The attacker exploits the
write() operation forwarding by virtiofs daemon (strategy
❶) to exhaust dirty memory on the host, downgrading the vic-
tim’s IO performance by 93.4%. 2) nf_conntrack table attack.
The malicious Kata container makes connect() to trigger
vhost-net kernel module (strategy ❸) to call tap_sendmsg()
to fill up the host’s nf_conntrack table, which causes the
victim container to drop 55.0% of network packets and fail
to establish connections to typical apps (e.g., Nginx server).
3) vhost-net attack. The guest sendmsg() or recvmsg() is
forwarded to host handle_tx() or handle_rx() by vhost-net
(strategy ❸), which can be exploited by a malicious Kata
container to consuming 1x more resources.

For the Firecracker-based container, we design four new at-
tacks. 1) firecracker-containerd escalation. An attacker sends
crafted CreateVM() request to the firecracker-containerd (strat-
egy ❶). Then the firecracker-containerd invokes host chmod()
and creat(), which is able to change any host directories’
owner or empty any files on the host. 2) firecracker-based
container dirty memory attack. A malicious Firecracker-based
container leverages the virtio-blk backend device (strategy ❷)
to forward guest write() to host write() to take up host dirty
memory, which is able to downgrade the victim container’s
IO performance by 86.7%. 3) nf_conntrack table attack. A
malicious container makes connect() to force the virtio-net
backend device (strategy ❷) call sendmsg(), which fills up the
host’s nf_conntrack table and leads to 60.0% of the victim’s
packets loss, making the Nginx service unavailable. 4) KVM
PIT timer attack (strategy ❸). A malicious Firecracker-based
container uses outb() to make KVM call pit_do_work() to
inject a large amount of timer interrupts into the guest system,

1https://github.com/firecracker-microvm/firecracker-
containerd/blob/main/docs/getting-started.md

which eventually downgrades the victim’s CPU performance
by 75.0%.

4.3 Attacks on Kata Containers

On the Kata Containers environment, we leverage three new
case studies to show how to leverage the attacking strategies
in §3.3 to break the isolation of Kata Containers. We conduct
the experiments on the local environment and Alibaba Cloud
successfully.

4.3.1 Kata Containers Dirty Memory Attack

The first case is exploiting the host’s dirty memory. A ma-
licious Kata container can leverage the virtiofs daemons to
forward the write() system call from the guest to the host
(strategy ❶ in Figure 4). One malicious container can gen-
erate a large amount of dirty memory in the host kernel by
repeatedly triggering the write() system call to write files in
the shared directory. As a result, the victim container’s IO
performance dramatically downgrades by 93.4%.
Root cause analysis. The size of dirty memory in the
host kernel affects the file reading and writing performance.
The Linux kernel introduces dirty_backgroud_ratio and
dirty_ratio as the threshold of the whole kernel-space dirty
memory. Whenever the size of dirty memory reaches the
dirty_backgroud_ratio, the kernel wakes up the flusher
threads to synchronize the dirty memory to the disk. Fur-
thermore, if the size of dirty memory keeps increasing to
the dirty_ratio, all processes’ write mode will be converted
from write-back to write-through. Note that the write-back
mode only permits to write the file data on the memory, while
the write-through mode needs to wait for the time-consuming
disk IO operations to write to the disk. The write performance
will dramatically downgrade if the write mode is changed
from write-back to write-through.

A malicious Kata container can impact the size of the ker-
nel’s dirty memory. As shown in Figure 5, when the container
calls guest write() to write a file in the shared directory, the
write request is processed by the guest kernel’s VFS (Virtual
File System). Then the virtiofs driver intercepts the request
and transfers the metadata of this write request to the virtiofs
daemon in the host user space via virtio. Once the virtiofs
daemon in the host receives the request, it triggers the host
write() system call and writes the files in the shared directory,
which increases the size of the dirty memory in the host ker-
nel. Thus, if the attacker repeatedly generates and writes files
in the container, it is possible to occupy all the dirty memory
and reach the dirty_ratio threshold in the host kernel.
Experiments. In one malicious container, we lever-
age the dd if=/dev/zero of=/mnt/test bs=1M count=4096

oflag=direct command to create and write files. In a victim
container, we run the same command to measure the IO per-
formance before and after the attack. After that, we increase

https://github.com/firecracker-microvm/firecracker-containerd/blob/main/docs/getting-started.md
https://github.com/firecracker-microvm/firecracker-containerd/blob/main/docs/getting-started.md
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Containers. Kata Container calls write() make the virtiofs daemon
call host write() to exhaust host’s dirty memory.

the number of attack containers and evaluate the relationship
between the cost of the attack (i.e., the number of attackers)
and the corresponding downgrades.

In our local environment, we launch attacks with 1, 5, and
10 malicious containers, respectively. As a result, the victim’s
downgrades of the dd command are 93.4%, 96.7%, and 98.2%,
respectively. On the Alibaba Cloud, the machine has 192GB
memory, and the dirty_ratio threshold is set to 20%. It
needs at least two malicious containers to occupy the dirty
memory and reach the dirty_ratio threshold. We launch
attacks with 2, 5, and 10 malicious containers, and the victim’s
downgrades are 94.6%, 97.1%, and 98.5%, respectively.

4.3.2 Kata Containers Nf_conntrack Table Attack

The second case is the Kata Containers nf_conntrack table
attack, which involves strategy ❸. In this case, the connect()

system calls invoked by the malicious container are forwarded
to the vhost-net module, which triggers tap_sendmsg() func-
tion in the host kernel. This function sends frames to the
host kernel network stack, which will add an item in the host
nf_conntrack table. Thus, an attacker can leverage this op-
eration forwarding to fill up the host kernel’s nf_conntrack
table, which will eventually cause the victim container to lose
55.0% of its network packets.
Root cause analysis. It will cause random packets to drop on
the host system if the host nf_conntrack table is filled up. Note
that connection tracking [40] is a part of netfilter module in
the Linux kernel, which maintains the state information about
a connection in a memory table called nf_conntrack table.
The Linux kernel introduces nf_conntrack_max to indicate
the max number of the entries in the nf_conntrack table. If the
number of entries reaches the nf_conntrack_max threshold,
the received packets will be dropped by the netfilter module,
and a new connection cannot be established successfully.

A malicious container can take up an entry of host
nf_conntrack table by making connect() system call to es-
tablish TCP connections with other containers, as shown in
Figure 6. The network packets sent by the connect() are en-
capsulated into Ethernet frames and dispatched to the virtio-
net driver. Then the driver transfers the frames from the guest
to the host system via virtio. After that, the host kernel’s vhost-
net module receives the frames from the driver, and it invokes
tun_sendmsg() to send the frames to the tap device [41]. Fi-
nally, the frames are forwarded by the host Container Network
Interface (CNI) virtual bridge [42] to other containers, which
triggers the host kernel’s nf_conntrack_alloc() function and
adds an item in the host kernel’s nf_conntrack table. There-
fore, a malicious container is able to take advantage of this
forwarding mechanism to fill up the nf_conntrack table in the
host kernel, which will make the host drop packets randomly.
Experiments. We use 10 malicious Kata containers to launch
attacks locally and on Alibaba Cloud. They make many
TCP short connections between each other. As a result, the
vhost-net host kernel module fills up the nf_conntrack ta-
ble. Furthermore, we evaluate the attack’s impact by using
two sets of experiments. First, we run ping command in a
victim container to measure the packet loss rate due to the
attack, and we increase the number of malicious containers to
evaluate the changes of packet loss rate. Second, we run an
Nginx server in a victim container and use ab benchmarking
tools [43] in another container to measure the performance
downgrade of the Nginx server. We also increase the number
of malicious containers to evaluate the relationship between
the cost of the attacks and the Nginx server’s performance
downgrades.

Once the nf_conntrack table is filled up, it starts to drop
packets randomly. Specifically, for the set of ping experi-
ment, we launch attacks with 10, 15, and 20 containers, and
it causes 55.0%, 57.0%, and 61.0% packet loss on the lo-
cal environment, and 45.0%, 49.0%, and 50.0% packet loss
on Alibaba Cloud, respectively. While for the set of Nginx
experiment, once the nf_conntrack table is filled up, the ab

command fails to establish connections to the Nginx server
and it returns “the timeout specified has expired”. The
ab command keeps timing out regardless of the number of
containers’ growth in two environments.

4.3.3 Attack of the Vhost-net Kernel Module

The third case is to exploit the vhost-net kernel module. In
this case, a malicious container’s sendmsg() and recvmsg()

system calls are forwarded to the vhost-net kernel module,
which triggers the handle_rx() and handle_tx() kernel func-
tions. Accordingly, a vhost worker thread is waked up by the
vhost-net kernel module to handle the above kernel functions,
which transmits and receives network packets. This process
generates out-of-band workloads accounted to the host root
cgroups. By generating a large network throughput, a mali-



Guest User
Guest Kernel

Host Kernel

tap_sendmsg()

Guest connect()

virtio

Malicious 
Container

Virtio-net 
Driver

… The guest connect() is 
forwarded to the vhost-
net’s tap_sendmsg() via 
virtio

The Vhost-net send the Ethernet 
frames to the CNI Bridge, taking 
up a host nf_conntrack table entry

❶

❷

Host User

Vhost-net Nf_conntrack
Table

CNI 
Bridge

Tap

Figure 6: Operation forwarding of nf_conntrack table attack in Kata
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cious Kata container is able to force the vhost worker thread
in the host kernel to forward network packets, consuming 1x
more resources (strategy ❸ in Figure 4).
Root cause analysis. The vhost-net worker thread created
by the vhost-net kernel module consumes CPU resources to
process network packets forwarding. As a kernel module, the
vhost-net is introduced to improve the container’s networking
performance by reducing the number of system calls involved
in virtio networking. It can directly leverage host kernel
services to serve its functionalities by calling kernel functions
instead of system calls. Specifically, a worker thread called
vhost-<owner-device-emulator-process-pid> is created for
each virtual machine. The worker thread is mainly responsible
for running handle_rx() and handle_tx() kernel functions.
The two kernel functions transfer network packets between
the virtio-net driver and the vhost-net kernel module, which
consumes CPU resources under heavy networking traffic. In
the meantime, the vhost worker thread is attached to the host
root cgroups. Thus the workloads will not be accounted to
the microVM itself.
Experiments. We create two malicious Kata containers and
use iperf tools to generate a large number of network through-
put, and we transfer large network packets between them.
Finally, each container generates workloads on two separate
vhost kernel threads, and each kernel thread consumes 1x
more CPU resources. The results are the same for the local
and the cloud environments.

4.4 Attacks on Firecracker-based Container

On the Firecracker-based container environment, we leverage
four case studies to show how to use the strategies in §3 to
break the isolation of the Firecracker-based container. We
conduct the experiments on both the local and AWS bare
metal environments.

1 func (j *runcJailer) prepareBindMounts(...) error {
2 for _, m := range mounts {
3 ...
4 if stat.Mode&system call.S_IFMT == system

call.S_IFREG {↪→
5 err := j.bindMountFileToJail(m.HostPath,

filepath.Join(j.RootPath(), m.HostPath))↪→
6 ...
7 }
8 }
9 ...

10 }
11

12 func (j *runcJailer) bindMountFileToJail(src, dst string)
error {↪→

13 ...
14 err = os.Chown(filepath.Dir(dst), int(j.Config.UID),

int(j.Config.GID))↪→
15 ...
16 f, err := os.Create(dst)
17 ...
18 }

Figure 7: Source code of prepareBindMounts(). In this function,
the RuncJailer joins the host path to RuncJailer’s root path without
a check (line 5), changes the directory’s owner to RuncJailer’s user
(line 14), and creates an empty file (line 16).

4.4.1 Firecracker-containerd Escalation

The first case of the Firecracker-based container exploits the
firecracker-containerd to achieve privilege escalation and host
crash. Specifically, the container management requests sent
by a malicious user can trigger the firecracker-containerd to
make host chown() and creat() system calls, which prepare
the volume directory before starting the Firecracker microVM.
Due to careless checking for the parameters of the above two
system calls, the attacker can customize a crafted volume
path in a container creation request, tricking the firecracker-
containerd invoke these system calls with improper parame-
ters. In addition, the firecracker-containerd runs as root user,
which has two consequences. First, the firecracker-containerd
changes the owner of the file’s parent directory to a specific
user (e.g., a regular user in the host). In other words, an
attacker can change any host directory’s owner, which intro-
duces privilege escalation. Second, the file can be truncated
to length 0. Thus, by emptying the host’s essential system
files like ld.so, the host cannot run any applications anymore
due to the dynamic linker crash.
Root cause analysis. Due to the introduction of runc jailer 2

firecracker-containerd needs to invoke some system calls to
prepare for the startup of the microVMs. Particularly, the runc
jailer starts the Firecracker process in a runc container run-
ning in the host user space, which uses container isolation and
limitation mechanisms to jail the Firecracker process. With
the runc jailer enabled, the firecracker-containerd first creates
a directory on the host as the root directory of the runc jailer.
Then, the firecracker-containerd copies the Firecracker binary,
guest kernel binary, microVM’s root file system image, con-

2https://github.com/firecracker-microvm/firecracker-
containerd/pull/249

https://github.com/firecracker-microvm/firecracker-containerd/pull/249
https://github.com/firecracker-microvm/firecracker-containerd/pull/249
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Figure 8: Operation forwarding of dirty memory attack in
Firecracker-based container. Firecracker-based container calls
write() make the Firecracker call host write() to exhaust host
dirty memory.

tainer’s rootfs image, and container volumes into the created
directory, which ensures that the Firecracker process in the
jailer can access them. Finally, the firecracker-containerd
starts a runc jailer and executes the Firecracker binary in the
jailer.

When a user creates a Firecracker-based container, he/she
can specify and run the runc jailer as a host regular
user. Besides, the user can specify the volume configu-
ration. As shown in Figure 7, the prepareBindMounts()

function copies the file and its parent directory into
runc jailer’s directory which is specified by the host vol-
ume path. First, the prepareBindMounts() function joins
the jailer’s root directory and volume’s host path to a
joined path using filepath.Join() (line 5). Then, in the
bindMountFileToJail() function, the filepath.Dir() gets
the joined path’s parent directory, and the os.Chown() changes
the directory’s owner to the runc jailer’s user (line 14), which
is specified to a host regular user. Finally, os.Create() cre-
ates an empty duplicated files under the jailer’s root directory
(line 16). It is important to point out that if the dst parameter
of the os.Create() function points to an existing file, then
the file will be replaced by a new empty file.

However, with a crafted volume’s host path, the result
of filepath.Join() is possible to point to any host file
outside the runc jailer’s root directory. In the meantime,
the os.Chown() function does not check whether the joined
path is under the jailer’s root directory or not, but simply
changes the owner of the file’s parent directory to the speci-
fied host’s regular user. What’s worse, the os.Create() func-
tion does not perform any checking either. Thus, if the dst

parameter points to an existing important system file on the
host (e.g., ld.so), the file will be emptied brutally. As a result,
the host can not run any applications anymore due to the file
crash.

Experiments. We give the details of how to launch the
attack. Specifically, we specify the m.HostPath() to
/../../../../../../root/FILENAME (FILENAME is a regular
file in the /root directory). As shown in Figure 7, the
filePath.Join() join the directory to /root/FILENAME (line
5). Then, in the bindMountFiletoJail() function, the
dst parameter is /root/FILENAME. As the filePath.Dir()

function gets the location of the directory where the
file is located, the result of filePath.Dir() is /root.
The os.Chown() function changes the /root’s owner to
a specified host regular user (line 14). As a result, the
host regular user can get the privileges to access the
/root directory. Besides, we specify the m.HostPath()

to /../../../../../../lib/x86_64-linux-gnu/ld-2.27.so,
as shown in Figure 7, the filePath.Join() join the
dst parameter as /lib/x86_64-linux-gnu/ld-2.27.so. As
ld-2.27.so is an existing file in the host, the os.Create()

truncate its size to 0 (line 16), which crashes the host as it can
not run any new meaningful applications.

4.4.2 Firecracker-based Container Dirty Memory At-
tack

The second case is the Firecracker-based container dirty
memory attack, which involves strategy ❷. A malicious
Firecracker-based container can leverage the virtio block
(virtio-blk) to forward the write() operation to host system.
Similar to the dirty memory attack against Kata Containers,
a malicious container can trigger this operation forwarding
repeatedly and exhaust the host’s dirty memory. As a re-
sult, the victim Firecracker-based container suffers 86.7% IO
performance downgrade.
Root cause analysis. Similar to virtiofs daemon in Kata Con-
tainers, Firecracker-based container can also increase the size
of host dirty memory with the help of virtio-blk. Firecracker-
based container uses virtio-blk to mount the container’s rootfs
images into the microVM. As shown in Figure 8, when the
malicious container generates a large number of write() sys-
tem call to write a file in the container, the file operations
are transferred as block IO requests to the virtio-blk driver
in the guest kernel. Then the driver forwards the block IO
requests to the virtio-blk device in the Firecracker via vir-
tio. After that, the Firecracker makes a massive amount of
host system call write() to modify the disk image file and
quickly occupies the host’s dirty memory, reaching the host
kernel’s dirty_ratio threshold. As a result, the host kernel
forces all the write requests directly synchronize to the disk,
which will dramatically downgrade the victim container’s IO
performance.
Experiments. On our local environment, we launch attacks
with 1, 5, and 10 malicious containers, and there are 86.7%,
97.4%, and 98.2% slowdowns of the dd command in the
victim containers, respectively. On the AWS environment, the
machine has 192GB memory, and the dirty_ratio threshold



is set to 20%. It requires at least two containers to fill up the
dirty memory. We conduct the experiments with 2, 5, and 10
malicious containers, and the victim suffers 70.0%, 83.1%,
and 92.9% slowdowns, respectively.

4.4.3 Firecracker-based Container Nf_conntrack Table
Attack

The third case is the Firecracker-based container nf_conntrack
table attack, which involves strategy ❷. A malicious container
can leverage the virtio-net device in Firecracker to forward
the guest connect() system calls to host sendmsg(), and send
frames into the host kernel network stack while writing an
item in the host’s nf_conntrack table. By triggering this mech-
anism repeatedly, a malicious container can occupy the host
nf_conntrack table, causing 60.0% of the victim’s packet loss.
Root cause analysis. Firecracker-based container uses the
virtio-net device instead of the vhost-net kernel module as the
back-end device of the virtio-net driver for networking. How-
ever, the malicious container can still leverage the virtio-net
device to consume an entry of host nf_conntrack table. As
shown in Figure 9, first, when the Firecracker-based container
makes connect() system call repeatedly inside the microVM,
the data-link layer takes a large number of packets from the
network layer in the guest kernel. It encapsulates them into
frames and transports them to the virtio-net back-end de-
vice in the Firecracker via virtio. Second, the Firecracker
device emulator makes sendmsg() system call in the host ker-
nel and sends frames to the /dev/net/tap, which is a tap
device interface exposed to the host user space. After that,
the frames are transported to other containers via the host
CNI bridge. At the same time, the netfilter on the host calls
the nf_conntrack_alloc() function and writes a huge num-
ber of items in the host kernel’s nf_conntrack table. Thus,
a malicious Firecracker-based container can generate many
connections and fill up the host kernel’s nf_conntrack table,
making the host randomly drop packets.
Experiments. We launch attacks with 10, 15, and 20 contain-
ers. As a result, it takes up to one minute to fill up the host’s
nf_conntrack table. Once the nf_conntrack table is filled up,
it begins to drop packets randomly. Specifically, for the ping

experiments, the victim’s packet losses are 60.0%, 58.0%,
and 58.0% on the local environment, and 50.0%, 52.0%, and
55.0% on AWS. For the Nginx experiments, the Nginx server
can not be accessed and a timeout error is returned.

4.4.4 KVM PIT Timer Attack

The fourth case is to exploit the programmable interval timer
(PIT) [32] emulation mechanism in the KVM, which involves
strategy ❸. First, the Firecracker-based container writes low-
level I/O ports to create the virtual PIT timer, which KVM
emulates. Second, the KVM wakes up a host kernel thread
to handle pit_do_work() kernel function, injecting timer in-
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Figure 9: Operation forwarding of nf_conntrack table attack in
Firecracker-based container. Firecracker-based container calls
connect() make the Firecracker call sendmsg() to host CNI bridge,
filling up the host nf_conntrack table.

terrupts into the guest. Thus, a malicious Firecracker-based
container can leverage this emulation mechanism to delegate
workloads on the kernel thread, which consumes the host
68.0% CPU and significantly downgrades the performances
of other containers up to 87.8%.
Root cause analysis The kernel thread created by the
KVM consumes CPU to inject PIT timer interrupt into
the guest. The PIT (termed Intel 8253/8253) [32] is a
counter that generates an output signal when it reaches a
programmed count, and the output signal will trigger an
interrupt. Writing 0x40-0x43 I/O ports can create a pe-
riodic PIT timer and set its period. To emulate the PIT
timer in the microVM-based container, KVM leverages the
host Linux kernel’s high-resolution timers (hrtimers) [44]
as a virtual counter. Besides, it creates a kernel thread
called kvm-pit/<owner-device-emulator-process-pid> for
each VM. Whenever the hrtimer reaches the programmed
count, the callback function registered for the hrtimer queues
the pit_do_work() into the kernel thread’s work list and
wakes up the thread.

If one can repeatedly write the I/O ports to create PIT
timers and set a small value as the period of the timer, the
kernel thread will keep scheduled to a physical CPU, and run-
ning pit_do_work() to inject timer interrupts into the guest.
Furthermore, the kvm-pit kernel thread is attached to the
root cgroups in the Linux kernel. The number of resources
consumed by its workloads is accounted to the target ker-
nel thread instead of the user-space process. As a result,
a malicious microVM-based container can generate out-of-
band workloads, consume host resources, and attack other
microVM-based containers.
Experiments. In our experiment, we use the outb() function



to write the 0x43 port in the malicious container, trigger the
VM exit, and make KVM wake up the kernel thread to inject
timer interrupts. By generating many write requests to set
the PIT timer to tick, malicious containers can force kvm-pit
threads to run out-of-band workloads in the host kernel and
consume 68.0% of host CPU resources. We use sysbench to
measure the impact on victim containers. We launch attacks
with 1, 10, and 20 containers. The victim suffers 3.3%, 75.0%,
and 86.6% downgrades in the CPU benchmark. The victim
suffers 5.3%, 80.1%, and 87.8% downgrades in the memory
benchmark, 4.6%, 26.3%, and 64.6% downgrades in the IO
read benchmark, and 5.0%, 26.7%, and 64.6% downgrades in
the IO write benchmark, respectively.

4.5 Practicality Discussion

Attacks on traditional VM. The traditional VMs are also vul-
nerable to the operation forwarding attack, as the VM relies
on the host kernel to serve its functionalities. To validate it,
we choose QEMU/KVM to run the VMs and assume that the
attacker fully controls the malicious VM. Then we perform
our attacks in the local environment. The results show that
the dirty memory attack and the nf_conntrack table attack can
successfully cause DoS attacks. If we enable the vhost-net for
VMs networking and utilize virtiofs to share directories be-
tween the guest and host systems, the vhost-net attack and the
virtiofs daemon escalation attack can both achieve the same
impact as for the microVM-based container. Surprisingly, we
also find that the virtiofs daemon escalation attack can also
achieve privilege escalation in 9pfs [45], which is also a pass-
through file system that shares directories between host and
guest, similar to virtiofs. However, as QEMU uses High Preci-
sion Event Timer (HPET) [46] to replace PIT timer, the KVM
PIT timer attack cannot work in QEMU/KVM environment.
Responsible disclosure. All eight attacks presented in this
work have been responsibly disclosed to the Kata Contain-
ers, Firecracker, and virtiofs teams. We summarize our re-
ports in Table 2 of appendix A. Specifically, all attacks have
been confirmed. Further, the virtiofs daemon escalation, the
firecracker-containerd escalation, and the nf_conntrack table
attack (Firecracker) have been fixed and the patches have
been merged. While for the dirty memory attack (Kata), the
nf_conntrack table attack (Kata), the vhost-net attack, the
dirty memory attack (Firecracker), and the KVM PIT timer
attack, the developers have given out multiple methods to
mitigate these risks. We list all responses for each disclosed
attack from the related teams in Figures 10 and 11.

5 Mitigation Discussion

In the following, we give multiple suggestions to mitigate the
operation forwarding attacks introduced by container runtime
components, the device emulator, and host kernel components,

respectively. These suggestions are based on our communica-
tion with the related security teams.

5.1 Detecting Attacks via Monitor Tools

Monitor tools such as Virtual Machine Introspection
(VMI) [47] can be used to detect abnormal behaviors of the
microVM-based container. VMI can be leveraged to monitor
the sensitive guest syscalls raised by the microVM-based con-
tainers and defend against attacks triggered by guest system
calls via different rule configurations. However, the VMI
technique brings extra performance overhead which may be
unacceptable in certain scenarios [48].

5.2 Protecting Container Runtime Compo-
nents

Jailing the container runtime components. Jailing tech-
niques (i.e., namespaces and cgroups) can be applied on con-
tainer runtime components to enforce additional resource iso-
lation and limitation. Particularly, the mount namespace can
prevent firecracker-containerd from modifying files outside its
working directory, thus defeating the firecracker-containerd
escalation attack. Besides, one can limit dirty memory usage
of the virtiofs by adding the virtiofs daemon into cgroups.

However, ensuring container runtime’s normal functionali-
ties needs effort. For example, virtiofs community engaged in
intense discussion 3 on using user namespace to start non-root
virtiofs daemon without affecting users’ experiences.
Disabling the sharing file system. We also suggest disabling
the virtiofs file system to avoid multiple operation forwarding
paths and mitigate all the vulnerabilities introduced by vir-
tiofs. However, virtiofs is designed to offer local file system
semantics and high performance. The file system performance
downgrades without virtiofs in Kata Containers [49].

5.3 Protecting the Device Emulator

Using SR-IOV passthrough devices. We recommend to use
Single Root I/O Virtualization (SR-IOV) 4pass-through de-
vices for each microVM-based container to protect the device
emulator if required. In the SR-IOV scenario, each VM’s
I/O requests are directly handled by the physical device and
bypass the host kernel for processing. Specifically, the SR-
IOV devices can mitigate the Firecracker-based container
nf_conntrack table attacks, as the network packets are di-
rectly processed by the virtual bridge in the SR-IOV adapter.
However, it needs an SR-IOV capable adapter which may in-
crease the cost of the infrastructure. For example, according

3https://patchew.org/QEMU/348d4774-bd5f-4832-bd7e-
a21491fdac8d@www.fastmail.com/

4https://en.wikipedia.org/wiki/Single-root_input/
output_virtualization
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to the AWS EC2 documenation5, users can enable SR-IOV in
special EC2 instances on AWS.
Adding rate limitations. It is also suggested to limit the ac-
cess rate of host resources occupied by microVM-based con-
tainers by enabling rate-limiting capabilities for specific de-
vice emulators (i.e., networking and storage devices). Specifi-
cally, the system operators can configure the Firecracker rate
limiter to slow down the speed of producing dirty memory
and occupying the host nf_conntrack table.

5.4 Protecting Host Kernel Components

Attaching the worker threads to proper cgroup. Container
user can confine host kernel components’ workloads by mov-
ing related kernel threads into the microVM-based container’s
cgroup. For example, if the vhost-net and KVM PIT kernel
threads attach to the microVM-based container’s cgroups,
their workloads will be accounted and restrained properly.
Disabling functionalities of host kernel components. If
needed, it can prevent vhost-net and kvm-pit kernel thread
to generate workload by disabling the host’s vhost-net kernel
module and KVM PIT emulation. Thus, the vhost-net attack
and KVM PIT timer attack would be defeated.

6 Related Work
Virtual machine security. Since virtual machines are widely
used in multi-tenant cloud environments, there is extensive
research on VM security. Ristenpart et al. utilize host infor-
mation like network addresses to detect co-residency [10].
Later, multiple works leverage different level cache to con-
struct covert channels [11,14,15,50] for co-resident detection.
Zhang et al. demonstrate that attackers can use cache and
DRAM to launch side-channel attacks [12, 13, 51], which can
extract information from other VMs and even make privi-
lege escalation. Yelam et al. successfully detect co-residency
in AWS serverless environments based on memory bus con-
tention [52]. Besides, [53–56] exploit the hardware con-
tention to cause Denial-of-Service attacks. However, they
mainly target the shared hardware while ignoring that VMs’
components rely on the host kernel and forward operations
from guest to host.

Huang et al. demonstrate a kind of DoS attack called cas-
cade attack, which exhausts Xen’s shareable domain’s pro-
cessing capability to affect other co-resident VMs’ perfor-
mance [57]. Varadarajan et al. propose resource-freeing
attack to help improve the performance of the attacker’s
VM [58]. Zhou et al. exploit the boost mechanism in the Xen
credit scheduler to obtain extra CPU resources [59]. How-
ever, their works exploit Xen hypervisors or shared domain of
Xen. However, our target is microVM-based containers based

5https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
instance-types.html

on KVM hypervisor, and we focus on operation forwarding
brought by components of microVM-based container.

Container security. Besides virtual machine security, there
are studies on container security. Luo et al. identify several
covert channels against Docker and show related informa-
tion leak attacks [60]. Gao et al. systematically identify
the container’s information leak channel in the /proc and
the /sys directories [2]. Gao et al. demonstrate the exploiting
strategies to break the resource restrictions of Linux Con-
trol groups [3]. Yang et al. reveal the abstract resources in
the containers’ shared kernel and related abstract resource
attacks [4]. However, all these papers mainly focus on the
native container but do not systematically study the potential
risks in microVM-based containers.

There are also works on securing containers. Arnautov et
al. secure containers with Intel SGX [61]. Lei et al. reveal
a security mechanism called SPEAKER to reduce available
system calls of the containers [62]. Sun et al. propose a new
Linux namespace called security namespace to isolate security
policies for containers [63]. However, these works mainly
focus on securing native containers, which is orthogonal to
our work.

7 Conclusion

In this paper, we demonstrate that the components of
microVM-based container forward the user’s operations to
host system calls or host kernel functions, which can be ex-
ploited to break the isolation of microVM-based containers.
We divide the microVM-based container’s components into
three layers based on their functionalities. We illustrate that
attackers can leverage each layer’s components to forward
their operations to launch attacks. We further present four
attacks against Kata Containers and Firecracker-based con-
tainer, respectively, and we do the experiments on both the
local testbed and cloud bare-metal physical servers. The re-
sults show that the attacks can make privilege escalation, DoS
attacks, and generate out-of-band workload. Finally, we pro-
vide several suggestions for microVM-based container users
and developers to mitigate operation forwarding attacks.
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A Appendix

We summarize all the attacks’ reports in Table 2, including
the attack case name (Case), the confirmed status of each
case (Confirm Status), and whether the problem is fixed (Fix
status). All the cases which we conduct in this paper have
been reported through the proper channel, and all of them
have been confirmed. The related organizations have fixed
and merged the source code for the virtiofs daemon escalation,
the firecracker-containerd escalation, and the nf_conntrack
table attack (Firecracker). Further, We present the details
about the disclosures of all the attack cases in Figures 10
and 11.

Table 2: Summary of all the attacks’ reports. “K” denotes Kata
Containers environment, “F” denotes Firecracker-based container
environment.

Case Confirm Status Fix Status
Virtiofs daemon escalation Confirmed Patched
Firecracker-containerd escalation Confirmed Patched
Dirty memory attack (K) Confirmed Patch pending
Dirty memory attack (F) Confirmed Patch pending
Nf_conntrack table attack (K) Confirmed Patch pending
Nf_conntrack table attack (F) Confirmed Patched
Vhost-net attack Confirmed Patch pending
KVM PIT timer attack Confirmed Patch pending



(a) A part of acknowledgement of virtiofs daemon escalation (b) A part of acknowledgement of vhost-net attack

(c) A part of acknowledgement of dirty memory attack (K) (d) A part of acknowledgement of nf_conntrack table attack (K)

Figure 10: The issue acknowledgments of Kata Containers



(a) A part of acknowledgement of firecracker-containerd escalation (b) A part of acknowledgement of dirty memory attack (F)

(c) A part of acknowledgement of nf_conntrack table attack (F) (d) A part of acknowledgement of KVM PIT timer attack

Figure 11: The issue acknowledgments of the Firecracker-based Container
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