
This artifact appendix is included in the Artifact Appendices to the
Proceedings of the 32nd USENIX Security Symposium and appends to
the paper of the same name that appears in the Proceedings of the

32nd USENIX Security Symposium.
August 9–11, 2023 • Anaheim, CA, USA

978-1-939133-37-3

Open access to the Artifact Appendices
to the Proceedings of the 32nd USENIX

Security Symposium is sponsored
by USENIX.

Every Vote Counts: Ranking-Based Training of
Federated Learning to Resist Poisoning Attacks

Hamid Mozaffari, Virat Shejwalkar, and Amir Houmansadr,
University of Massachusetts Amherst

https://www.usenix.org/conference/usenixsecurity23/presentation/mozaffari

USENIX’23 Artifact Appendix: "Every Vote Counts:
Ranking-Based Training of Federated Learning to Resist Poisoning Attacks"

Hamid Mozaffari, Virat Shejwalkar & Amir Houmansadr
University of Massachusetts Amherst

{hamid, vshejwalkar, amir}@cs.umass.edu

A Artifact Appendix

A.1 Abstract
This report provides details of our implementation of a fed-
erated learning algorithm called Federated Rank Learning
(FRL) which is designed to achieve high test accuracy and
mitigate the risk of model poisoning attacks in a non-iid client
distribution. The report includes the implementation of FRL
on CIFAR10 and MNIST datasets with different percentages
of malicious clients. The evaluation workflow of the code
includes running experiments to validate the major claims of
the paper and measuring the test accuracy of the models. The
report also includes the installation instructions and require-
ments for running the code.

A.2 Description & Requirements
A.2.1 How to access

Our artifact, the implementation of our work on Fed-
erated Rank Learning (FRL), can be accessed at
https://github.com/SPIN-UMass/FRL. The code is written
in PyTorch and is publicly available for anyone to use. The
repository includes a comprehensive readme file that provides
instructions on how to run different experiments, making it
easy for others to replicate our results and build upon our
work. To ensure that our artifact is easily accessible and can
be referenced by others in the future, we have chosen to host
it on the popular repository hosting platform GitHub.

A.2.2 Hardware dependencies

To evaluate our artifact, a system with a GPU is required
for faster learning. Our experiments were conducted on an
NVIDIA GeForce GTX 1080 Ti with 11GB RAM.

A.2.3 Software dependencies

The experiments in this study were conducted using the Py-
Torch 1.13.1 and Numpy 1.23.5 libraries. PyTorch is a widely-
used deep learning framework that provides a seamless in-
tegration of computation graphs and tensors, making it an
ideal choice for implementing and training neural networks.

Table 1: In our experiments, we use the following, state-of-
the-art model architectures.

Architecture Layer Name Number of parameters

LeNet
(MNIST)

Conv(32) 288
Conv(64) 18432
FC(128) 1605632

FC(10) or FC(62) 1280

Conv8
(CIFAR10)

Conv(64), Conv(64) 38592
Conv(128), Conv(128) 221184
Conv(256), Conv(256) 884736
Conv(512), Conv(512) 3538944

FC(256), FC(256), FC(10) 592384

Numpy, on the other hand, is a library for the Python pro-
gramming language that provides support for large, multi-
dimensional arrays and matrices, along with a wide range
of mathematical functions to operate on these arrays. By us-
ing these two libraries in our experiments, we were able to
efficiently implement and evaluate the performance of our
models.

A.2.4 Benchmarks

We provide two benchmark datasets widely used in prior
works on federated learning robustness:
MNIST is a 10-class class-balanced classification task with
70,000 gray-scale images, each of size 28 × 28. We exper-
iment with LeNet architecture given in Table 1. For local
training in each FRL/FL round, each client uses 2 epochs.
For training ranks (experiments with FRL), we use SGD with
learning rate of 0.4, momentum 0.9, weight decay 1e-4, and
batch size 8.
CIFAR10 is a 10-class classification task with 60,000 RGB
images (50,000 for training and 10,000 for testing), each of
size 32 × 32. We experiment with a VGG-like architecture
given in Table 1. For local training in each FRL/FL round,
each client uses 5 epochs. For training ranks (experiments
with FRL), we optimize SGD with learning rate of 0.4, mo-
mentum of 0.9, weight decay of 1e-4, and batch size of 8.

Table 1 shows the state-of-the-art model architectures and
corresponding datasets that we use in our experiments. We
also show the number of parameters in each of their layers.

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 97

https://github.com/SPIN-UMass/FRL

A.3 Set-up
A.3.1 Installation

To install the code for this study, please follow these steps:

1. To download the repository, use the following
command: git clone https://github.com/SPIN-
UMass/FRL.git. The final stable URL is:
https://github.com/SPIN-UMass/FRL/tree/
4cf2550972e0e6299f61f682579f10b8e32c39d7.

2. Create a new conda environment. you can do so using the
following command: conda create - -name FRL_test
python=3.10.9

3. Activate the environment: conda activate FRL_test

4. Then, to install the dependencies, run: pip install -r
requirements.txt

This will download the repository and install all of the
necessary dependencies, including PyTorch and Numpy, as
specified in the software appendices section. Once the instal-
lation is complete, you should be able to run the code and
reproduce the results from the study.

A.3.2 Basic Test

To run a simple experiment on the CIFAR10
dataset using the Federated Rank Learning (FRL)
algorithm, run the following command: python
main.py - -data_loc /CIFAR10/data/ - -config experi-
ments/001_config_CIFAR10_Conv8_FRL_1000users_noniid
1.0_nomalicious.txt. This will initiate a federated learning
experiment on the CIFAR10 dataset using 1000 clients in
a non-iid fashion with a Dirichlet distribution parameter
β = 1.0. The experiment will run for 2000 global FL rounds,
with 25 clients selected for local updates in each round. Upon
completion, the results of the experiment will be recorded
and can be analyzed to evaluate the performance of the FRL
algorithm on the CIFAR10 dataset.

A.4 Evaluation workflow
A.4.1 Major Claims

These are the major claims made in our paper:

(C1): FRL can achieve similar performance as FedAvg,
Trimmed-Mean and Multi-Krum on CIFAR10 and
MNIST distributed over a large number of clients in
a non-iid fashion when there is no malicious client, as
illustrated in Table 1 in the paper.

(C2): FRL can achieve high test accuracy when 10% of
the clients are malicious on CIFAR10 and MNIST dis-
tributed over a large number of clients in a non-iid

fashion, as illustrated in Table 1 in the paper. FedAvg,
Trimmed-Mean and Multi-Krum results in lower test
accuracy.

(C3): FRL can achieve high test accuracy when 20% of
the clients are malicious on CIFAR10 and MNIST dis-
tributed over a large number of clients in a non-iid
fashion, as illustrated in Table 1 in the paper. FedAvg,
Trimmed-Mean and Multi-Krum results in lower test
accuracy.

A.4.2 Experiments

The experiments directory includes the experiments per-
formed in the paper. This section explains the purpose of
each experiment and the expected outcome.
(E1): [FL with 0% malicious client] [30 human-minutes +

16 compute-hour]: For claim C1.
Execution:

For CIFAR10:
• run FRL: python main.py - -data_loc

/CIFAR10/data/ - -config experi-
ments/001_config_CIFAR10_Conv8_FRL_1000
users_noniid1.0_nomalicious.txt.

• We also provided more experiments for FedAVG,
Trimmed-Mean and Multi-Krum in the experiments
directory.

For MNIST:
• run FRL: python main.py - -data_loc

/MNIST/data/ - -config experi-
ments/004_config_MNIST_LeNet_FRL_1000
users_noniid1.0_nomalicious.txt

• We also provided more experiments for FedAVG,
Trimmed-Mean and Multi-Krum in the experiments
directory.

Results: The results of the experiment will be stored
in the Logs directory. For MNIST, the expected test ac-
curacy should be around 98%, and for CIFAR10, the
expected test accuracy should be around 85%.

(E2): [FRL with 10% malicious client] [30 human-minutes
+ 16 compute-hour]: For claim C2.
Execution: For CIFAR10, run python main.py
- -data_loc /CIFAR10/data/ - -config experi-
ments/002_config_CIFAR10_Conv8_FRL_1000
users_noniid1.0_10pmal.txt. For MNIST, run python
main.py - -data_loc /MNIST/data/ - -config ex-
periments/005_config_MNIST_LeNet_FRL_1000
users_noniid1.0_10pmal.txt.
Results: The results of the experiment will be stored
in the Logs directory. For MNIST, the test accuracy
should be around 98%, and for CIFAR10, the test ac-
curacy should be around 79%.

(E1): [FRL with 20% malicious client] [30 human-minutes
+ 16 compute-hour]: For claim C3.

98 Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium USENIX Association

Execution: For CIFAR10, run python main.py
- -data_loc /CIFAR10/data/ - -config experi-
ments/003_config_CIFAR10_Conv8_FRL_1000
users_noniid1.0_20pmal.txt. For MNIST, run python
main.py - -data_loc /MNIST/data/ - -config ex-
periments/006_config_MNIST_LeNet_FRL_1000
users_noniid1.0_20pmal.txt.
Results: The results of the experiment will be stored
in the Logs directory. For MNIST, the test accuracy
should be around 98%, and for CIFAR10, the test ac-
curacy should be around 69%.

It is important to note that the results may vary slightly due to
the random initialization of the models and the random sam-
pling of clients in each round of federated learning. Therefore,
it is recommended to run the experiments multiple times and
report the average of the results to obtain a more robust evalu-
ation of the performance of the FRL algorithm.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

USENIX Association Artifact Appendices to the Proceedings of the 32nd USENIX Security Symposium 99

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

