sponsors
usenix conference policies
Automatically Detecting Vulnerable Websites Before They Turn Malicious
Kyle Soska and Nicolas Christin, Carnegie Mellon University
Awarded Best Student Paper!
Significant recent research advances have made it possible to design systems that can automatically determine with high accuracy the maliciousness of a target website. While highly useful, such systems are reactive by nature. In this paper, we take a complementary approach, and attempt to design, implement, and evaluate a novel classification system which predicts, whether a given, not yet compromised website will become malicious in the future. We adapt several techniques from data mining and machine learning which are particularly well-suited for this problem. A key aspect of our system is that the set of features it relies on is automatically extracted from the data it acquires; this allows us to be able to detect new attack trends relatively quickly. We evaluate our implementation on a corpus of 444,519 websites, containing a total of 4,916,203 webpages, and show that we manage to achieve good detection accuracy over a one-year horizon; that is, we generally manage to correctly predict that currently benign websites will become compromised within a year.
Open Access Media
USENIX is committed to Open Access to the research presented at our events. Papers and proceedings are freely available to everyone once the event begins. Any video, audio, and/or slides that are posted after the event are also free and open to everyone. Support USENIX and our commitment to Open Access.
author = {Kyle Soska and Nicolas Christin},
title = {Automatically Detecting Vulnerable Websites Before They Turn Malicious},
booktitle = {23rd USENIX Security Symposium (USENIX Security 14)},
year = {2014},
isbn = {978-1-931971-15-7},
address = {San Diego, CA},
pages = {625--640},
url = {https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/soska},
publisher = {USENIX Association},
month = aug
}
connect with us